

A Review on Salient Object Detection

Feng Lin

Target

Detect and segment salient objects in natural scenes

- a) good detection
- b) high resolution
- c) computational efficiency

Metric

F-score

$$F_{\beta} = \frac{(1+\beta^2)Precision \times Recall}{\beta^2 Precision + Recall}$$

MAE (mean absolute error)

$$MAE = rac{1}{W imes H} \sum_{x=1}^{W} \sum_{y=1}^{H} ||S(x,y) - G(x,y)||$$

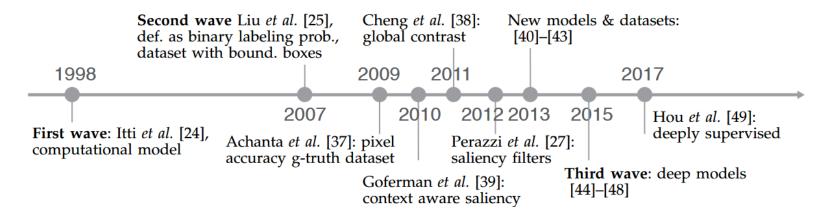
Dataset

- ECSSD
- PASCAL-S
- SOD
- HKU-IS
- DUT-OMRON
- THUR-15K
- MSRA-10K
- MSRA-B (2k for training)
- DUTS (\approx 15k for training)
- ••••

Method

Two stages: (simultaneously perform the two stages in practice)

- a) detecting the most salient object
- b) segmenting the accurate region of that object



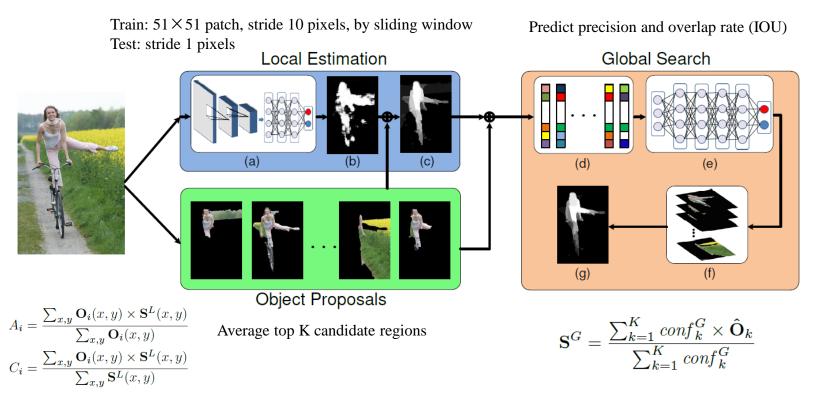
Supervised or unsupervised method

Method

- Supervised
- Unsupervised

Global Search Combining local estimation and global search

- Utilize the geodesic object proposal (GOP)
- **Regress saliency confidence**



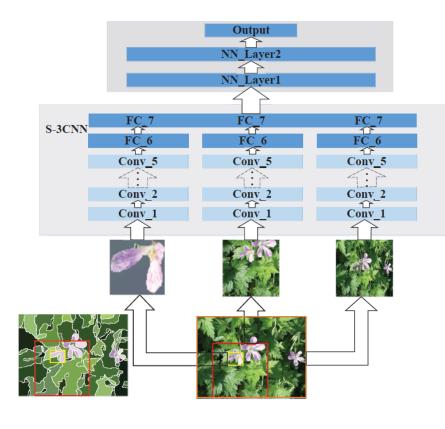
Deep Networks for Saliency Detection via Local Estimation and Global Search

Table 4. Quantitative results using F-measure and MAE. The best and second best results are shown in red color and blue color.

Data Set	Metric	DRFI	GC	HS	MR	PCA	SVO	UFO	wCtr	CPMC-GBVS	HDCT	LEGS
SOD	F-Measure	0.617	0.433	0.480	0.542	0.498	0.217	0.521	0.567	_	0.511	0.630
300	MAE	0.230	0.288	0.301	0.274	0.290	0.414	0.272	0.245	_	0.260	0.205
ECCSD	F-Measure	0.726	0.568	0.631	0.689	0.575	0.237	0.638	0.672	_	0.641	0.775
ECCSD	MAE	0.172	0.218	0.232	0.192	0.252	0.406	0.210	0.178	-	0.204	0.137
PASCAL-S	F-Measure	0.619	0.496	0.536	0.600	0.531	0.266	0.552	0.611	0.654	0.536	0.669
FASCAL-S	MAE	0.195	0.245	0.249	0.219	0.239	0.373	0.227	0.193	0.178	0.226	0.170
MSRA-5000	F-Measure	_	0.704	0.765	0.789	0.707	0.302	0.774	0.788	_	0.773	0.803
MSICA-5000	MAE	_	0.149	0.160	0.130	0.189	0.364	0.145	0.110	_	0.141	0.128

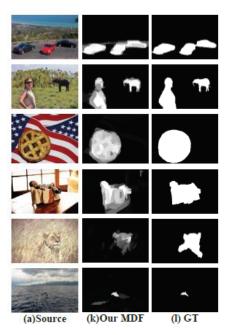
Visual Saliency Based on Multiscale Deep Features

- Enclose the considered region, neighboring regions and the entire image
- Run saliency model repeatedly over every region of the image



$$A = \sum_{k=1}^{M} \alpha_k A^{(k)}$$

s.t. $\{\alpha_k\}_{k=1}^{M} = \operatorname*{argmin}_{\alpha_1, \alpha_2, \dots, \alpha_M} \sum_{i \in I_v} \left\| A_i - \sum_k \alpha_k A_i^{(k)} \right\|_F^2$



Visual Saliency Based on Multiscale Deep Features

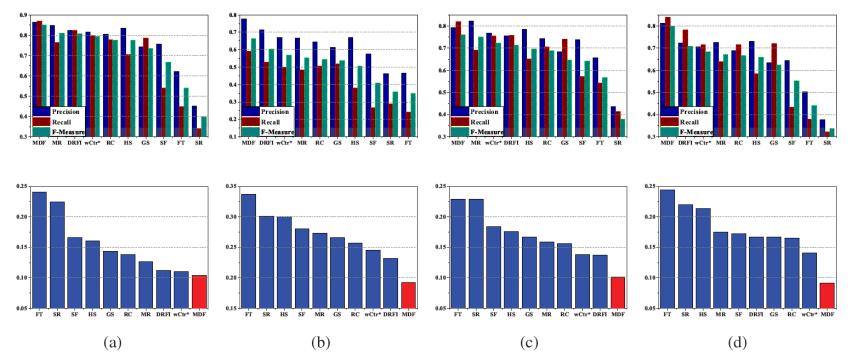
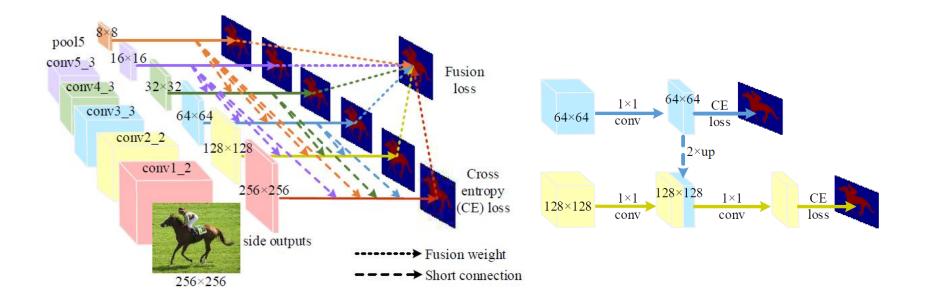


Figure 3: Quantitative comparison of saliency maps generated from 10 different methods on 4 datasets. From left to right: (a) the MSRA-B dataset, (b) the SOD dataset, (c) the iCoSeg dataset, and (d) our new HKU-IS dataset. From top to bottom: (1st row) the precision-recall curves of different methods, (2nd row) the precision, recall and F-measure using an adaptive threshold, and (3rd row) the mean absolute error.

> Deeply Supervised Salient Object Detection with Short Connections



$$\tilde{L}_{\text{final}} \left(\mathbf{W}, \tilde{\mathbf{w}}, \mathbf{f}, \mathbf{r} \right) = \tilde{L}_{\text{fuse}} \left(\mathbf{W}, \tilde{\mathbf{w}}, \mathbf{f}, \mathbf{r} \right) + \tilde{L}_{\text{side}} \left(\mathbf{W}, \tilde{\mathbf{w}}, \mathbf{r} \right)$$

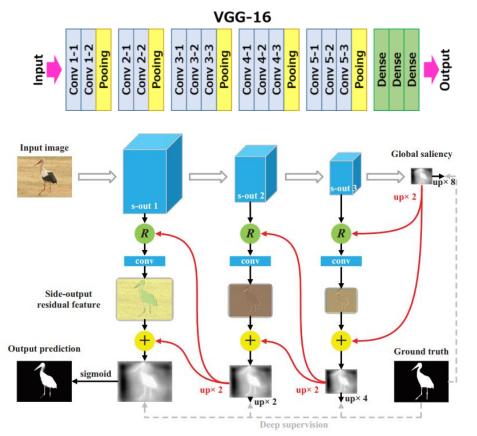
Deeply Supervised Salient Object Detection with Short Connections

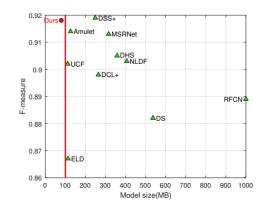
	MSRA	-B [37]	ECSS	D [51]	HKU-	IS [29]	PASCA	LS [34]	SOD [39, 40]
Datasets	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE	F_{β}	MAE
RC [7]	0.817	0.138	0.741	0.187	0.726	0.165	0.640	0.225	0.657	0.242
CHM [31]	0.809	0.130	0.722	0.107	0.728	0.158	0.640	0.223	0.655	0.242
DSR [32]	0.812	0.119	0.737	0.173	0.735	0.140	0.646	0.204	0.655	0.234
DRFI [24]	0.855	0.119	0.787	0.166	0.783	0.143	0.679	0.221	0.712	0.215
MC [52]	0.872	0.062	0.822	0.107	0.781	0.098	0.721	0.147	0.708	0.184
ELD [13]	0.914	0.042	0.865	0.981	0.844	0.071	0.767	0.121	0.760	0.154
MDF [29]	0.885	0.104	0.833	0.108	0.860	0.129	0.764	0.145	0.785	0.155
DS [13]	-	-	0.810	0.160	-	-	0.818	0.170	0.781	0.150
RFCN [47]	0.926	0.062	0.898	0.097	0.895	0.079	0.827	0.118	0.805	0.161
DHS [36]	-	-	0.905	0.061	0.892	0.052	0.820	0.091	0.823	0.127
DCL [30]	0.916	0.047	0.898	0.071	0.907	0.048	0.822	0.108	0.832	0.126
Ours	0.927	0.028	0.915	0.052	0.913	0.039	0.830	0.080	0.842	0.118

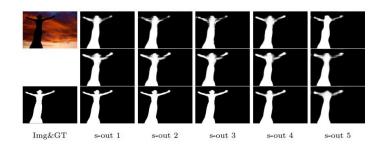
Table 3: Quantitative comparisons with 11 methods on 5 popular datasets. The top three results are highlighted in red, green, and blue, respectively.

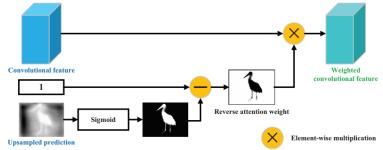
Reverse Attention for Salient Object Detection

- Fine boundary, efficiency (45 FPS) and light weight (81 MB)
- Learn redundant features inside object without RA





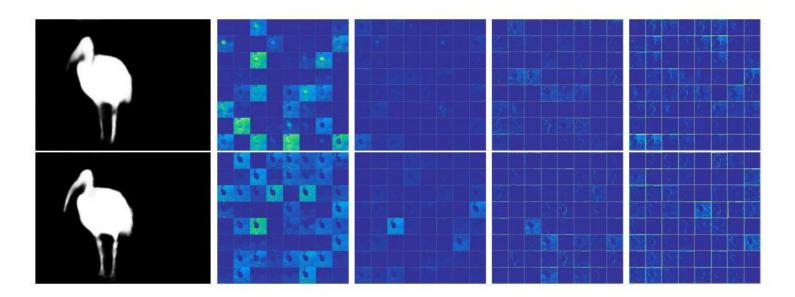




House and Technolog

Salient Object Detection

Reverse Attention for Salient Object Detection

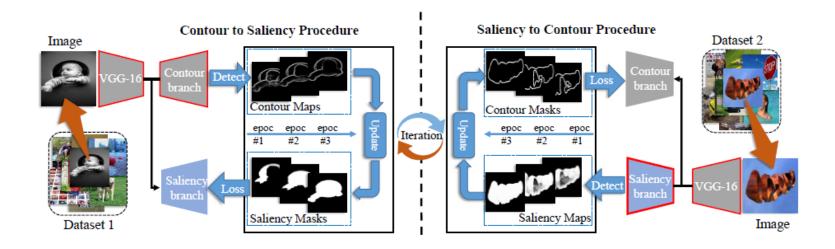


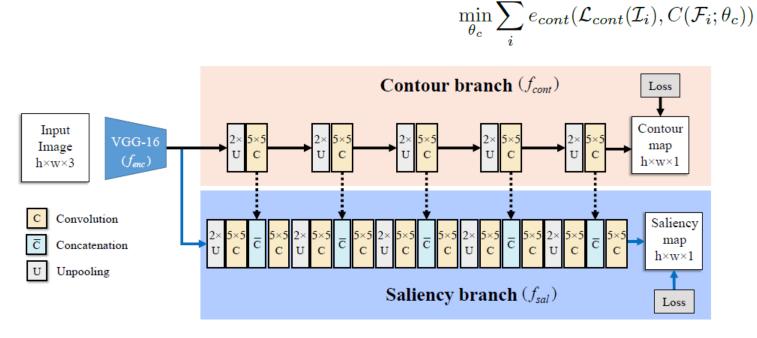
Reverse Attention for Salient Object Detection

		ining #Images	-MSRA-B	HKU-IS	ECSSD	PASCAL-S	SOD	DUT- OMRON
DRFI [13]	MB	2.5k	0.851	0.775	0.784	0.690	0.699	0.664
	MID	2.0K	0.123	0.146	0.172	0.210	0.223	0.150
DCL ⁺ [22]	MB	2.5k	0.918	0.907	0.898	0.810	0.831	0.757
	MID	2.0K	0.047	0.048	0.071	0.115	0.131	0.080
DHS[26]	MK+D	$9.5k \times 12$	-	0.892	0.905	0.824	0.823	-
Diio[20]	MIX+D	5.0K×12	-	0.052	0.061	0.094	0.127	-
SSD[16]	MB	2.5k	0.902	-	0.865	0.774	0.793	0.754
55D[10]	MD	2.0K	0.160	-	0.193	0.220	0.222	0.193
RFCN[39]	MK	10k	-	0.894	0.889	0.829	0.799	0.744
III ON[55]	WIIX	10K	-	0.088	0.109	0.133	0.169	0.111
DLS[10]	MK	10k	-	0.835	0.852	0.753	-	0.687
DES[10]	WIIX	10K	-	0.070	0.088	0.132	-	0.090
NLDF[30]	MB	$2.5k \times 2$	0.911	0.902	0.903	0.826	0.837	0.753
NLDF [50]	MD	2.0K \ 2	0.048	0.048	0.065	0.099	0.123	0.080
Amulet[45]	MK	$10k \times 8$	-	0.899	0.914	0.832	0.795	0.743
Annuet[40]	WIIX	10K×0	-	0.050	0.061	0.100	0.144	0.098
UCF[46]	MK	$10k \times 8$	-	0.888	0.902	0.818	0.805	0.730
001[40]	WIIX	10K×0	-	0.061	0.071	0.116	0.148	0.120
DSS[8]	MB	$2.5k \times 2$	0.920	0.900	0.908	0.826	0.834	0.764
Dooloj	MD	2.0K×2	0.043	0.050	0.063	0.102	0.126	0.072
DSS ⁺ [8]	MB	$2.5k \times 2$	0.929	0.916	0.919	0.835	0.843	0.781
033 [0]	MD	2.0K \ 2	0.034	0.040	0.055	0.095	0.122	0.063
Ours	MB	$2.5k \times 2$	0.919	0.898	0.905	0.818	0.839	0.762
w/o RA	MD	2.0K \ Z	0.042	0.049	0.063	0.106	0.126	0.071
Ours	MB	$2.5k \times 2$	0.931	0.913	0.918	0.834	0.844	0.786
Ours	MD	2.0K×2	0.036	0.045	0.059	0.104	0.124	0.062

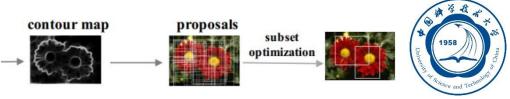
Contour Knowledge Transfer for Salient Object Detection

- Automatically convert an existing deep contour detection model into a salient object detection model without using any manual salient object masks
- An alternating training pipeline to update the network parameters





$$\min_{\theta_s} \sum_i e_{sal}(\mathcal{L}_{sal}(\mathcal{I}_i), S(\mathcal{F}_i; \theta_s))$$



Contour Knowledge Transfer for Salient Object Detection

• Contour to Saliency:

utilize a large collection of unlabeled images to generate corresponding salient object masks, via Multiscale Combinatorial Grouping (MCG)

$$\max_{\mathcal{B}} \{ S(\mathcal{B}) - \alpha \cdot O(\mathcal{B}) - \kappa \cdot N(\mathcal{B}) \} \qquad \max_{\substack{b_i \subseteq C \\ b_i \subseteq C \\ i \neq j}} \max_{\substack{b_i \in C \\ i \neq j}} K(b_i, b_j) c_i c_j - \kappa \cdot \sum_{\substack{b_i \subseteq C \\ b_i \subseteq C \\ i \neq j}} c_i \}$$

Saliency to Contour:
compute gradient on the binary region mask

• Alternating Training:

use two different sets of unlabeled images (M and N) to interactively train the saliency branch and contour branch

WTA: $S_i = K(cnt(b_i), C^{e_r}) + \gamma \cdot K(b_i, S^{e_r})$

Salient Object Detection

set lambda = 0 in the first epoch, and 1 in the following epochs $\mathbf{1}$

Contour Knowledge Transfer for Salient Object Detection

Table 1. Analysis of the proposed method. Our results are obtained on ECSSD. "CDC" denotes the cross domain connections that used in our C2S-Net. "AVG-P" means the two-stage strategy, "WTA" denotes the "winner-take-all" strategy, and "CTS" refers to the contour-to-saliency transferring method used in this paper. "SCJ" denotes that we optimize the parameters of two branches jointly, and "AT_(i)" means that *i*-th alternating training iterations are used to update network parameters. "†" denotes the model used in this paper for comparing with fully supervised models. Weighted F-measure (F^w_β) : the higher the better; MAE: the lower the better.

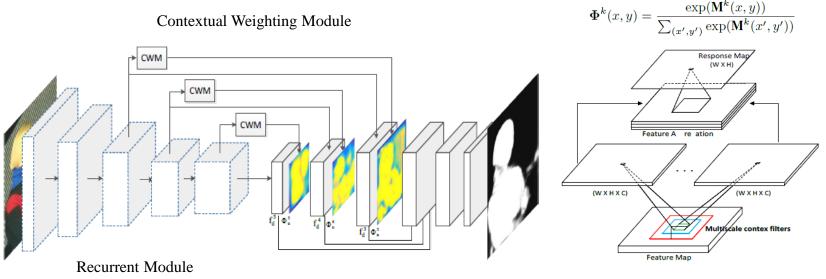
Method	data/annotations	F^w_β	MAE
C2S-Net	$5 \mathrm{K} \mathrm{w} / \mathrm{masks}$	0.793	0.103
C2S-Net + CDC	5K w/ masks	0.812	0.081
C2S-Net + CDC + AVG-P	$5 \mathrm{K} \mathrm{w/o} \mathrm{masks}$	0.665	0.121
C2S-Net + CDC + WTA	$5 \mathrm{K} \mathrm{w/o} \mathrm{masks}$	0.732	0.112
C2S-Net + CDC + CTS	$5 \mathrm{K} \mathrm{w/o} \mathrm{masks}$	0.743	0.093
C2S-Net + CDC + CTS + SCJ	10K w/o masks	0.759	0.088
$C2S-Net + CDC + CTS + AT_{(1)}$	10K w/o masks	0.778	0.080
$C2S-Net + CDC + CTS + AT_{(3)}$	10K w/o masks	0.837	0.059
$C2S-Net + CDC + CTS + AT_{(5)}$	10K w/o masks	0.838	0.059
$C2S-Net + CDC + CTS + AT_{(3)}$	20K w/o masks	0.849	0.056
\dagger C2S-Net + CDC + CTS + AT ₍₃₎	$30 \mathrm{K} \mathrm{w/o} \mathrm{masks}$	0.852	0.054

Contour Knowledge Transfer for Salient Object Detection

Table 2. Quantitative comparisons with 10 leading CNN-Based methods on five widely-used benchmarks. The top three results are shown in Red, Blue, and Green, respectively. F_{β} : the higher the better; MAE: the lower the better.

Methods	EC	SSD	PASC	CAL-S	DU	JT	HK	U-IS	DUT	S-TE
Methods	F_{β}	MAE								
SBF [37]	0.852	0.880	0.765	0.130	0.685	0.108	0.842	0.075	0.698	0.107
WSS $[29]$	0.856	0.103	0.770	0.139	0.689	0.110	0.860	0.079	0.737	0.100
$\mathbf{Ours}_{(10\mathrm{K})}$	0.896	0.059	0.835	0.086	0.733	0.079	0.883	0.051	0.790	0.066
MC [39]	0.822	0.107	0.721	0.147	0.703	0.088	0.781	0.098	-	-
MDF [14]	0.832	0.105	0.759	0.142	0.694	0.092	0.860	0.129	0.768	0.099
DS [19]	0.882	0.122	0.757	0.172	0.716	0.120	0.866	0.079	0.776	0.090
ELD [12]	0.869	0.098	0.777	0.121	0.720	0.091	0.767	0.071	0.758	0.097
DHS $[23]$	0.902	0.061	0.820	0.092	-	-	0.892	0.052	0.812	0.065
DCL [15]	0.887	0.072	0.798	0.109	0.718	0.094	0.879	0.059	0.771	0.079
DSS [8]	0.903	0.062	0.821	0.101	0.761	0.074	0.899	0.051	0.813	0.064
UCF $[38]$	0.910	0.078	0.819	0.127	0.735	0.132	0.885	0.074	0.771	0.117
Amulet $[37]$	0.915	0.059	0.828	0.100	0.743	0.098	0.895	0.052	0.778	0.085
Ours(30K)	0.910	0.054	0.846	0.081	0.757	0.071	0.896	0.048	0.807	0.062

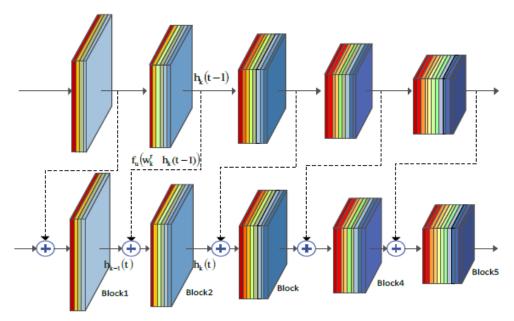
- Detect Globally, Refine Locally: A Novel Approach to Saliency Detection
 - Directly applying concatenation or element-wise operation to different feature maps are suboptimal (is cluttered)
 - A spatial response map to adaptively weight the features maps for each position
 - Consider the relations between the center point and its $n \times n$ neighbors
 - Recurrent Localization Network + Boundary Refinement Network



Recurrent Localization Network

kernel sizes $(3 \times 3, 5 \times 5, 7 \times 7)$

Detect Globally, Refine Locally: A Novel Approach to Saliency Detection



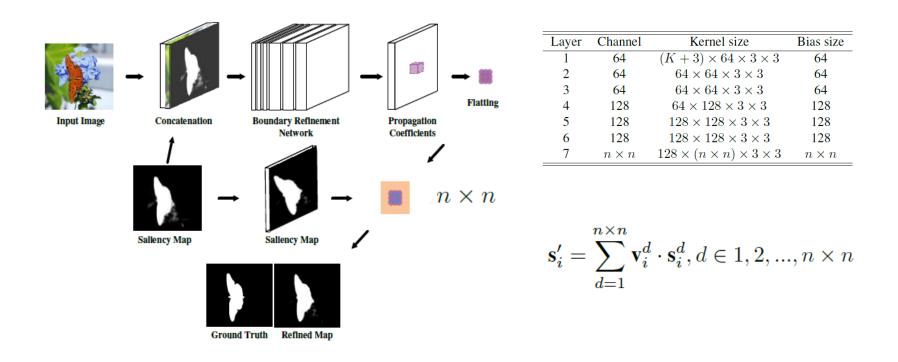
Recurrent Module

- Absorb the contextual and structural information with the hidden convolution units
- > Increase the depth of traditional CNNs without increasing the number of parameters

Unversion of States and Techniford

Salient Object Detection

Detect Globally, Refine Locally: A Novel Approach to Saliency Detection



Detect Globally, Refine Locally: A Novel Approach to Saliency Detection

*	ECSSD	[31]	THUR15	K [5]	HKU-IS	[17]	DUTS [27]	DUT-OMR	ON [32]
	F-measure	MAE								
Ours	0.903	0.045	0.716	0.077	0.882	0.037	0.768	0.051	0.709	0.063
SRM [29]	0.892	0.056	0.708	0.077	0.874	0.046	0.757	0.059	0.707	0.069
Amulet [33]	0.869	0.061	0.670	0.094	0.839	0.052	0.676	0.085	0.647	0.098
UCF 34	0.841	0.080	0.645	0.112	0.808	0.074	0.629	0.117	0.613	0.132
KSR [30]	0.782	0.135	0.604	0.123	0.747	0.120	0.602	0.121	0.591	0.131
RFCN [28]	0.834	0.109	0.627	0.100	0.835	0.089	0.712	0.090	0.627	0.111
DS [20]	0.821	0.124	0.626	0.116	0.785	0.078	0.632	0.091	0.603	0.120
DCL [18]	0.827	0.151	0.676	0.161	0.853	0.136	0.714	0.149	0.684	0.157
DHS [22]	0.871	0.063	0.673	0.082	0.852	0.054	0.724	0.067	-	-
LEGS [26]	0.785	0.119	0.607	0.125	0.732	0.119	0.585	0.138	0.592	0.133
MCDL 36	0.796	0.102	0.620	0.103	0.757	0.092	0.594	0.105	0.625	0.089
MDF [17]	0.805	0.108	0.636	0.109	-	-	0.673	0.100	0.644	0.092
BL [25]	0.684	0.217	0.532	0.219	0.660	0.207	0.490	0.238	0.499	0.239
DRFI [12]	0.733	0.166	0.576	0.150	0.722	0.145	0.541	0.175	0.550	0.138

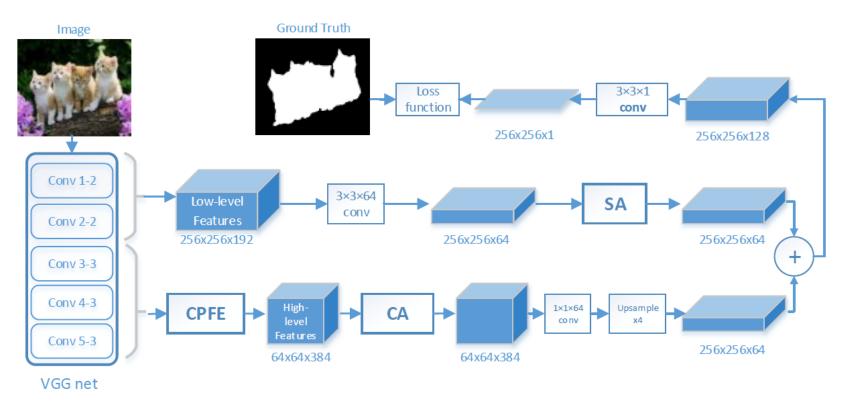
Table 1. Quantitative evaluation in terms of F-measure and MAE scores. The best two scores are shown in red and blue colors, respectively.

*	ECSS	D	THUR1	5K	HKU-	IS	DUTS	S	DUT-OMRON		
	F-measure	MAE									
Baseline	0.861	0.058	0.659	0.099	0.838	0.050	0.696	0.073	0.643	0.092	
CWM	0.867	0.054	0.667	0.084	0.840	0.047	0.716	0.060	0.661	0.075	
RM	0.893	0.048	0.702	0.080	0.875	0.041	0.760	0.054	0.712	0.066	
BRN	0.903	0.045	0.716	0.077	0.882	0.037	0.768	0.051	0.709	0.063	

Table 3. Performance of the proposed modules.

> Pyramid Feature Attention Network for Saliency Detection

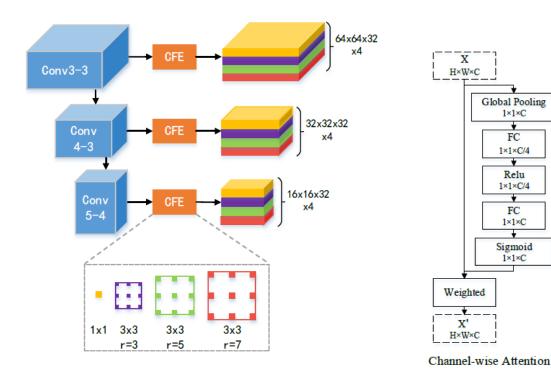
- ASPP + Channel Attention Block (*CVPR'18*), actually
- Edge information as the previous works
- Impressive performance

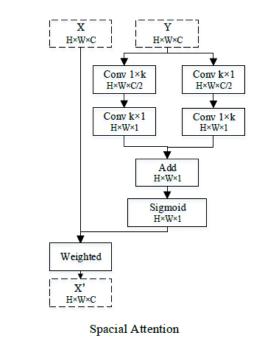


Barrier and Technology

Salient Object Detection

> Pyramid Feature Attention Network for Saliency Detection





context-aware feature extraction module (CPFE)

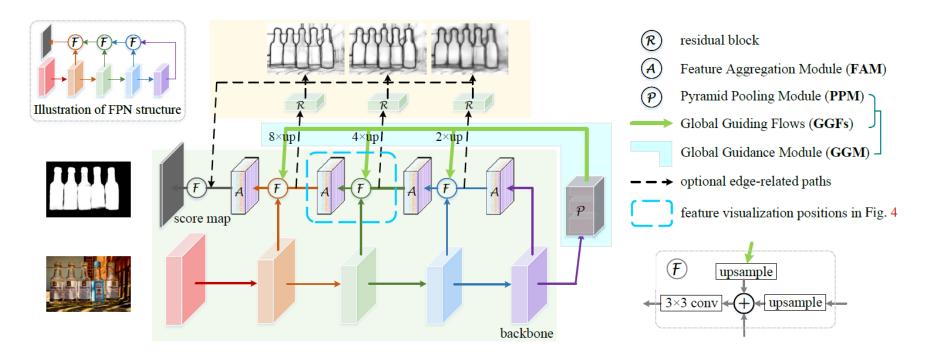
> Pyramid Feature Attention Network for Saliency Detection

ie, and green.										
Methods	DUTS	S-test	ECS	SSD	HKU	J-IS	PASC	AL-S	DUT-O	MRON
Methous	wF_{β}	MAE								
Ours	0.8702	0.0405	0.9313	0.0328	0.9264	0.0324	0.8922	0.0677	0.8557	0.0414
BDMPM[42]	0.8508	0.0484	0.9249	0.0478	0.9200	0.0392	0.8806	0.0788	0.7740	0.0635
GRL[33]	0.8341	0.0509	0.9230	0.0446	0.9130	0.0377	0.8811	0.0799	0.7788	0.0632
PAGRN[45]	0.8546	0.0549	0.9237	0.0643	0.9170	0.0479	0.8690	0.0940	0.7709	0.0709
Amulet 43	0.7773	0.0841	0.9138	0.0604	0.8968	0.0511	0.8619	0.0980	0.7428	0.0976
SRM[32]	0.8269	0.0583	0.9158	0.0564	0.9054	0.0461	0.8677	0.0859	0.7690	0.0694
UCF[44]	0.7723	0.1112	0.9018	0.0704	0.8872	0.0623	0.8492	0.1099	0.7296	0.1203
DCL[20]	0.7857	0.0812	0.8959	0.0798	0.8899	0.0639	0.8457	0.1115	0.7567	0.0863
DHS[22]	0.8114	0.0654	0.9046	0.0622	0.8901	0.0532	0.8456	0.0960	-	-
DSS[15]	0.8135	0.0646	0.8959	0.0647	0.9011	0.0476	0.8506	0.0998	0.7603	0.0751
ELD[18]	0.7372	0.0924	0.8674	0.0811	0.8409	0.0734	0.7882	0.1228	0.7195	0.0909
NLDF[24]	0.8125	0.0648	0.9032	0.0654	0.9015	0.0481	0.8518	0.1004	0.7532	0.0796
RFCN[31]	0.7826	0.0893	0.8969	0.0972	0.8869	0.0806	0.8554	0.1159	0.7381	0.0945

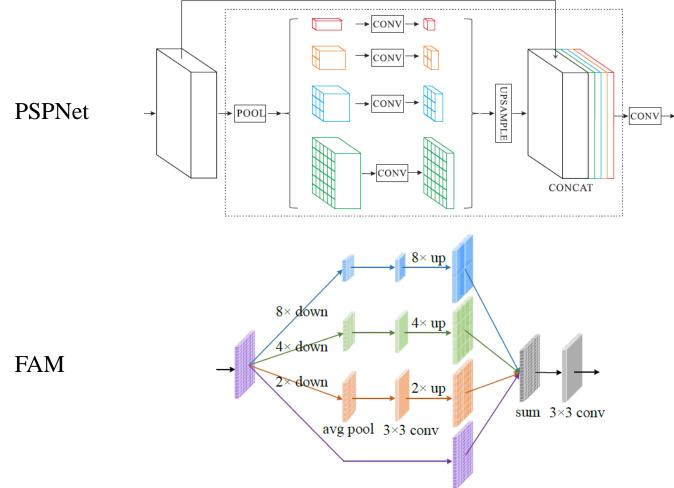
Table 1. The wF_{β} and MAE of different salient object detection approaches on all test datasets. The best three results are shown in red, blue, and green.

A Simple Pooling-Based Design for Real-Time Salient Object Detection

- Use edge detection dataset, train alternatively
- Use PSP / modified PSP blocks



A Simple Pooling-Based Design for Real-Time Salient Object Detection

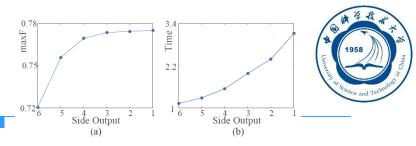


A Simple Pooling-Based Design for Real-Time Salient Object Detection

	Tra	uning	ECSS	D [41]	PASCA	L-S [21]	DUT-	D [42]	HKU-	[S [18]	SOD	[30]	DUTS-	TE [35]
Model	#Images	Dataset	MaxF↑	$MAE\downarrow$	MaxF↑	$MAE\downarrow$	MaxF↑	$MAE\downarrow$	MaxF↑	$MAE \downarrow$	MaxF↑	$MAE\downarrow$	MaxF ↑	$MAE\downarrow$
VGG-16 backbor	ıe													
DCL [19]	2,500	MB	0.896	0.080	0.805	0.115	0.733	0.094	0.893	0.063	0.831	0.131	0.786	0.081
RFCN [36]	10,000	MK	0.898	0.097	0.827	0.118	0.747	0.094	0.895	0.079	0.805	0.161	0.786	0.090
DHS [23]	9,500	MK+DTO	0.905	0.062	0.825	0.092	-	-	0.892	0.052	0.823	0.128	0.815	0.065
MSR [17]	5,000	MB + H	0.903	0.059	0.839	0.083	0.790	0.073	0.907	0.043	0.841	0.111	0.824	0.062
DSS [9]	2,500	MB	0.906	0.064	0.821	0.101	0.760	0.074	0.900	0.050	0.834	0.125	0.813	0.065
NLDF [28]	3,000	MB	0.903	0.065	0.822	0.098	0.753	0.079	0.902	0.048	0.837	0.123	0.816	0.065
UCF [45]	10,000	MK	0.908	0.080	0.820	0.127	0.735	0.131	0.888	0.073	0.798	0.164	0.771	0.116
Amulet [44]	10,000	MK	0.911	0.062	0.826	0.092	0.737	0.083	0.889	0.052	0.799	0.146	0.773	0.075
GearNet[10]	5,000	MB + H	0.923	0.055	-	-	0.790	0.068	0.934	0.034	0.853	0.117	-	-
PAGR [46]	10,553	DTS	0.924	0.064	0.847	0.089	0.771	0.071	0.919	0.047	-	-	0.854	0.055
PiCANet [24]	10,553	DTS	0.930	0.049	0.858	0.078	0.815	0.067	0.921	0.042	0.863	0.102	0.855	0.053
PoolNet (Ours)	2,500	MB	0.918	0.057	0.828	0.098	0.783	0.065	0.908	0.044	0.846	0.124	0.819	0.062
PoolNet (Ours)	5,000	MB + H	0.930	0.053	0.838	0.093	0.806	0.063	0.936	0.032	0.861	0.118	0.855	0.053
PoolNet (Ours)	10,553	DTS	0.936	0.047	0.857	0.078	0.817	0.058	0.928	0.035	0.859	0.115	0.876	0.043
PoolNet [†] (Ours)	10,553	DTS	0.937	0.044	0.865	0.072	0.821	0.056	0.931	0.033	0.866	0.105	0.880	0.041
ResNet-50 backb	one													
SRM [37]	10,553	DTS	0.916	0.056	0.838	0.084	0.769	0.069	0.906	0.046	0.840	0.126	0.826	0.058
DGRL [38]	10,553	DTS	0.921	0.043	0.844	0.072	0.774	0.062	0.910	0.036	0.843	0.103	0.828	0.049
PiCANet [24]	10,553	DTS	0.932	0.048	0.864	0.075	0.820	0.064	0.920	0.044	0.861	0.103	0.863	0.050
PoolNet (Ours)	10,553	DTS	0.940	0.042	0.863	0.075	0.830	0.055	0.934	0.032	0.867	0.100	0.886	0.040
PoolNet [†] (Ours)	10,553	DTS	0.945	0.038	0.880	0.065	0.833	0.053	0.935	0.030	0.882	0.102	0.892	0.036

MB: MSRA-B [25], MK: MSRA10K [3], DTO: DUT-OMRON [42], H: HKU-IS [18], DTS: DUTS-TR [35].

Table 3. Quantitative salient object detection results on 6 widely used datasets. The best results with different backbones are highlighted in **blue** and **red**, respectively. [†]: joint training with edge detection. As can be seen, our approach achieves the best results on nearly all datasets in terms of F-measure and MAE.



Cascaded Partial Decoder for Fast and Accurate Salient Object Detection

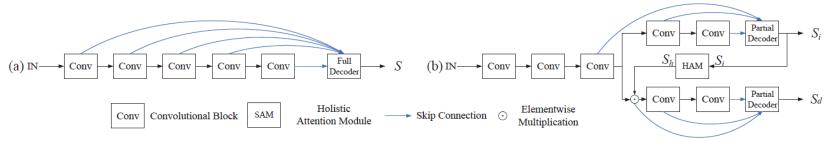
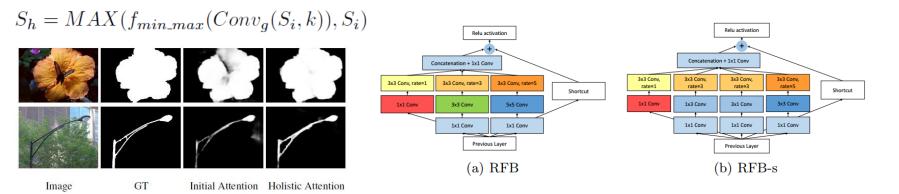


Figure 3: (a) Traditional encoder-decoder framework, (b) The proposed cascaded partial decoder framework. We use VGG16 [29] as the backbone network. Traditional framework generates saliency map S by adopting full decoder which integrates all level features. The proposed framework adopts partial decoder, which only integrates features of deeper layers, and generates an initial saliency map S_i and the final saliency map S_d .

Gaussian blur for the attention map:

Partial decoder: a RFB-like block



CVPR'19

Cascaded Partial Decoder for Fast and Accurate Salient Object Detection

Method	Backbone	FPS	E	CSSD 3	9]	H	KU-IS [1	6	DUT-	OMRON	N [40]	Ľ	UTS [33	3	PAS	SCAL-S	19
Wiethou	Backbolle	1.1.2	maxF	avgF	MAE	maxF	avgF	MAE	maxF	avgF	MAE	maxF	avgF	MAE	maxF	avgF	MAE
Amulet [42]	VGG16	21	0.922	0.881	0.057	0.909	0.863	0.047	0.791	0.699	0.072	0.832	0.738	0.062	0.839	0.780	0.095
NLDF [25]	VGG16	20	0.915	0.886	0.051	0.908	0.871	0.041	0.759	0.694	0.071	0.830	0.759	0.055	0.840	0.792	0.083
DSS [9]	VGG16	23	0.928	0.889	0.051	0.915	0.867	0.043	0.781	0.692	0.065	0.858	0.757	0.050	0.859	0.796	0.081
BMPM [41]	VGG16	28	0.928	0.894	0.044	0.920	0.875	0.039	0.775	0.693	0.063	0.850	0.768	0.049	0.862	0.770	0.074
PAGR [43]	VGG19	-	0.927	0.894	0.061	0.918	0.886	0.048	0.771	0.711	0.072	0.855	0.788	0.055	0.851	0.803	0.092
PiCANet [21]	VGG16	7	0.931	0.885	0.046	0.921	0.870	0.042	0.794	0.710	0.068	0.851	0.749	0.054	0.862	0.796	0.076
CPD-A (ours)	VGG16	105	0.928	0.906	0.045	0.918	0.884	0.037	0.781	0.721	0.061	0.854	0.787	0.047	0.859	0.814	0.077
CPD (ours)	VGG16	66	0.936	0.915	0.040	0.924	0.896	0.033	0.794	0.745	0.057	0.864	0.813	0.043	0.866	0.825	0.074
SRM [35]	ResNet50	37	0.917	0.892	0.054	0.903	0.871	0.047	0.769	0.707	0.069	0.827	0.757	0.059	0.847	0.796	0.085
DGRL [36]	ResNet50	6	0.925	0.903	0.043	0.914	0.882	0.037	0.779	0.709	0.063	0.834	0.764	0.051	0.853	0.807	0.074
PiCANet-R [21]	ResNet50	5	0.935	0.886	0.046	0.919	0.870	0.043	0.803	0.717	0.065	0.860	0.759	0.051	0.863	0.798	0.075
CPD-RA (ours)	ResNet50	104	0.934	0.907	0.043	0.918	0.882	0.038	0.783	0.725	0.059	0.852	0.776	0.048	0.855	0.807	0.077
CPD-R (ours)	ResNet50	62	0.939	0.917	0.037	0.925	0.891	0.034	0.797	0.747	0.056	0.865	0.805	0.043	0.864	0.824	0.072

Table 1: Comparison of different methods on five benchmark datasets and four metrics including FPS, MAE (lower is better), max F-measure (higher is better) and average F-measure. The comparison is under two settings (with VGG [29] and ResNet50 [8] backbone netowrk). The best result of each setting is shown in **Red**. "-R" means using ResNet50 as the backbone. "-A" means the results of the attention branch. All method are the trained on training set of DUTS [33]. There is not available code of PAGR [43] and the author only provides the saliency maps.

Cascaded Partial Decoder for Fast and Accurate Salient Object Detection

Method	FPS	E	CSSD 3	9]	H	KU-IS [1	6	DUT-	OMRON	N [40]	D	UTS [33	3	PAS	SCAL-S	19]
Method	115	maxF	avgF	MAE	maxF	avgF	MAE	maxF	avgF	MAE	maxF	avgF	MAE	maxF	avgF	MAE
BMPM [41]	28	0.928	0.894	0.044	0.920	0.875	0.039	0.775	0.693	0.063	0.850	0.768	0.049	0.862	0.803	0.074
BMPM-CPD-A	82	0.932	0.901	0.046	0.920	0.882	0.037	0.796	0.731	0.057	0.864	0.799	0.046	0.861	0.817	0.074
BMPM-CPD	47	0.935	0.907	0.043	0.925	0.888	0.035	0.804	0.740	0.056	0.870	0.808	0.044	0.868	0.822	0.072
NLDF 25	21	0.915	0.886	0.051	0.908	0.871	0.041	0.759	0.694	0.071	0.830	0.759	0.055	0.840	0.792	0.083
NLDF-CPD-A	75	0.918	0.889	0.049	0.914	0.873	0.039	0.775	0.710	0.061	0.837	0.773	0.050	0.841	0.793	0.083
NLDF-CPD	48	0.922	0.896	0.044	0.916	0.880	0.036	0.781	0.721	0.060	0.842	0.786	0.048	0.843	0.800	0.080
Amulet [42]	21	0.922	0.881	0.057	0.909	0.863	0.047	0.791	0.699	0.072	0.832	0.738	0.062	0.839	0.780	0.095
Amulet-CPD-A	61	0.925	0.889	0.053	0.910	0.864	0.045	0.790	0.708	0.070	0.832	0.747	0.060	0.842	0.784	0.091
Amulet-CPD	45	0.934	0.901	0.047	0.920	0.878	0.040	0.805	0.735	0.063	0.845	0.771	0.055	0.851	0.801	0.085

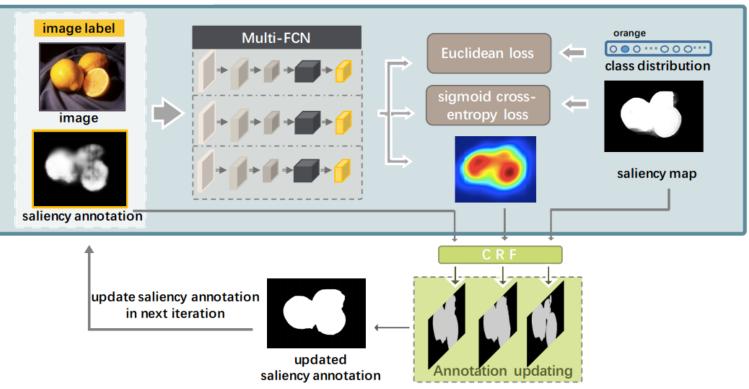
Table 2: Comparison of the original models and the improved models (-CPD-A and -CPD).

Method

- Supervised
- Unsupervised

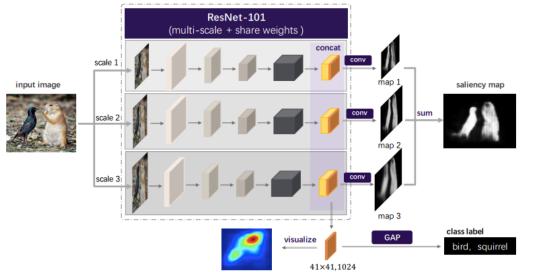
Weakly Supervised Salient Object Detection Using Image Labels

- MB+ generate training saliency maps (hard for low contrast and complex background)
- Multi-FCN simultaneously learns pixel-wise saliency and class distribution
- Initial saliency, predicted saliency and average top-three CAMs map + CRF $M_{c}\left(x,y\right) = \sum_{k} w_{k}^{c} f_{k}\left(x,y\right)$
- Iteratively training (lowest validation error for each iteration)
- Finetune saliency prediction stream guided by offline CAM without annotations
- Multiple input scales (0.5, 0.75, 1)
- Probability maps are resized to raw size, summed up to get final probability (sigmoid)
- MS COCO with multiple class labels + MSRA-B and HKU-IS without annotations



Training iteration

Weakly Supervised Salient Object Detection Using Image Labels



Algorithm 1 Saliency Annotations Updating **Require:** Current saliency map annotation S_{anno} , the predicted saliency map S_{predict}, CRF output of current saliency map annotation Canno, CRF output of the predicted saliency map C_{predict} and CRF output of the class activation map C_{cam} **Ensure:** The updated saliency map annotation S_{update} . 1: if MAE $(C_{anno}, C_{predict}) \leq \alpha$ then $S_{update} = \operatorname{CRF}\left(\frac{S_{anno} + S_{predict}}{2}\right)$ 2: 3: else if MAE (C_{anno}, C_{cam}) В >and MAE ($C_{predict}, C_{cam}$) > β then 4: Discard the training sample in next iteration 5: else if MAE (C_{anno}, C_{cam}) \leq MAE ($C_{predict}, C_{cam}$) then $S_{update} = C_{anno}$ 6: 7: **else** $S_{update} = C_{predict}$ 8:

9: end if

Weakly Supervised Salient Object Detection Using Image Labels

Data Set	Metric	GS	SF	HS	MR	GC	BSCA	MB+	MST	ASMO	ASMO+
MSRA-B	maxF	0.777	0.700	0.813	0.824	0.719	0.830	0.822	0.809	0.890	0.896
WISKA-D	MAE	0.144	0.166	0.161	0.127	0.159	0.130	0.133	0.098	0.067	0.068
ECSSD	maxF	0.661	0.548	0.727	0.736	0.597	0.758	0.736	0.724	0.837	0.845
LCSSD	MAE	0.206	0.219	0.228	0.189	0.233	0.183	0.193	0.155	0.110	0.112
HKU-IS	maxF	0.682	0.590	0.710	0.714	0.588	0.723	0.727	0.707	0.846	0.855
11KU-15	MAE	0.166	0.173	0.213	0.174	0.211	0.174	0.180	0.139	0.086	0.088
DUT-OMRON	maxF	0.556	0.495	0.616	0.610	0.495	0.617	0.621	0.588	0.722	0.732
DUI-OWIKOW	MAE	0.173	0.147	0.227	0.187	0.218	0.191	0.193	0.161	0.101	0.100
PASCAL-S	maxF	0.620	0.493	0.641	0.661	0.539	0.666	0.673	0.657	0.752	0.758
IASCAL-S	MAE	0.223	0.240	0.264	0.223	0.266	0.224	0.228	0.194	0.152	0.154
SOD	maxF	0.620	0.516	0.646	0.636	0.526	0.654	0.658	0.647	0.751	0.758
500	MAE	0.251	0.267	0.283	0.259	0.284	0.251	0.255	0.223	0.185	0.187

Table 1: Comparison of quantitative results including maximum F-measure (larger is better) and MAE (smaller is better). The best three results on each dataset are shown in **red**, **blue**, and **green**, respectively.

Table 4: Evaluation of different benchmark methods in alternate saliency map optimization on DUT-OMRON dataset.

Metric	MB+	ASMO (MB+)	BSCA	ASMO (BSCA)	MST	ASMO (MST)
maxF	0.621	0.722	0.617	0.685	0.588	0.691
MAE	0.193	0.101	0.191	0.121	0.161	0.126

Weakly Supervised Salient Object Detection Using Image Labels

		••	7			And			A.	1
A			<u></u>	1					1	À.
X	K		AT	1	5 1		N	K	j.)
		N.								
		1. A. M.			न <u>चाल</u> न ज्लान	ب			*	.
62					G					
(a)Source	(b)GS	(c)SF	(d)HS	(e)MR	(f)GC	(g)BSCA	(h)MB+	(i)MST	(j)Ours	(k)GT

Figure 5: Visual comparison of saliency maps from state-of-the-art methods. The ground truth (GT) is shown in the last column. Our proposed method consistently produces saliency maps closest to the ground truth.

Reference

- [1] Salient Object Detection: A Survey, TPAMI'17
- [2] Deep Networks for Saliency Detection via Local Estimation and Global Search, CVPR'15
- [3] Visual Saliency Based on Multiscale Deep Features, CVPR'15
- [4] Deeply Supervised Salient Object Detection with Short Connections, CVPR'17
- [5] Reverse Attention for Salient Object Detection, ECCV'18
- [6] Contour Knowledge Transfer for Salient Object Detection, ECCV'18
- [7] Weakly Supervised Salient Object Detection Using Image Labels, AAAI'18
- [8] Detect Globally, Refine Locally: A Novel Approach to Saliency Detection, CVPR'18
- [9] Pyramid Feature Attention Network for Saliency detection, CVPR'19
- [10] A Simple Pooling-Based Design for Real-Time Salient Object Detection, CVPR'19
- [11] Cascaded Partial Decoder for Fast and Accurate Salient Object Detection, CVPR'19